Zum Inhalt

SysPOT

SysPOT: System zur adaptiven photonischen Oberflächentestung mit lernfähiger Bildauswertung in Kombination mit einem Reinigungssystem
(Projektlaufzeit April 2021 bis  März 2024)

Problemstellung und Motivation

Einhergehend mit der Entwicklung immer kleinerer und leistungsfähigerer Baugruppen und Komponenten im Maschinenbau, der Automobil- und der Elektronikindustrie hat sich das Qualitätsmerkmal „Technische Sauberkeit“ (TecSa) entwickelt. Es beschreibt im Wesentlichen die Abwesenheit unerwünschter Materie innerhalb der industriellen Fertigung und Montage, welche negative Folgen für die Leistungsfähigkeit und Zuverlässigkeit der Komponenten und das Gesamtsystem haben. Zudem können Partikel im Prozess der Fehlerüberprüfung von Oberflächen zu unerwünschten Pseudofehlern führen, welche zu einer erhöhten Ausschuss- bzw. Nacharbeitsrate führen können.

Derzeit wird zumeist auf eine Analyse der Sauberkeit nach VDA 19.1 zurückgegriffen, welche jedoch keine Direktinspektion der Bauteile mit einer gleichzeitigen Interpretation der Ergebnisse zulässt. Durch die zeitliche Latenz ist es zudem nicht möglich, zwischen den Messungen und den Ergebnissen eine Adaption von Prozessen vorzunehmen. Dabei sind besonders Reinigungsprozesse ausgeschlossen.

Zielsetzung

Die angestrebte Innovation basiert auf der Erforschung einer KI-basierten Steuerungs- bzw. Reglungslogik, durch die partikuläre Verschmutzungen und Kratzer analysiert werden können. Ein Sensor soll in diesem Vorhaben auf verschiedenen Oberflächen und Geometrien automatisiert adaptiert werden und die sich ergebenden Ergebnisse des Sensors in Form von Bildern klassifiziert werden.

Ziel ist es ein Assistenzsystem zu entwickeln, welches Nutzern in Echtzeit Informationen über die Eigenschaften von Partikeln und ihre Entstehung im Produktionsprozess liefert. Dadurch wird es Anwendern ermöglicht, Verbesserungen in der Wertschöpfungskette einzuleiten. Kombiniert werden soll dies mit einer Selbstkonfiguration der Reinigungsanlage. Diese soll zum einen dem gesellschaftlichen und ökologischen Anspruch gerecht werden, bedarfsgerechte Reinigungen mit minimalem Einsatz von Energie und Chemie zu ermöglichen und zum anderen den Aufwand für die Konfiguration von Reinigungsprozessen durch Experten zu verringern.

© IPS​/​TU Dortmund

Vorgehensweise und Arbeitsteilung

Der Arbeitsplan des Projektes gliedert sich in vier Arbeitspakete. Die inhaltliche Ausarbeitung der Forschungsfrage in Bezug auf den optischen Sensor erfolgt dabei durch die KI-basierte Regelung des optischen Sensors, die Klassifikation der erzeugten Partikelbilder und die Reglung des bedarfsgerechten Reinigungsprozesses. Zudem soll eine abschließende Validierung der Projektergebnisse und der Transfer in die Praxis erfolgen

Anfänglich werden die Anforderungen an die Gesamtsysteme erhoben und definiert. Unter der Hinzunahme von Algorithmen, welche die automatisierte Bildaufnahme und die Selbstkonfiguration des Sensors unterstützen, erfolgt im Anschluss die Forschungsarbeit, welche die Segmentierung der Partikel auf verschiedenen Oberflächen betrifft. Zusätzlich umfasst die Einarbeitung und Verifikation von verschiedenen Klassifikationsmodellen unter Berücksichtigung der erforderlichen Datenbasis und der Annotation der Bilder, welche die Interpretierbarkeit der Sensorergebnisse ermöglichen.  Damit die Reinigungsparameter so konfiguriert werden können, dass die gewünschte Sauberkeit zu minimalen Kosten erreicht werden kann, werden Ansätze des verstärkenden Lernens erforscht. Dadurch wird auf die Einbindungspotentiale des Sensors in Reinigungsanlagen hinsichtlich der Selbstkonfiguration des Gesamtsystems geachtet. Abschließend werden die Forschungsergebnisse hinsichtlich ihrer Anwendung getestet. Dabei werden Schnittstellen für die industrielle Integration und die wirtschaftlichen Potenziale untersucht, welche sich durch die Anwendung der Ergebnisse erzielen lassen.

Forschungs-, Entwicklungs- und Anwendungspartner

Das For­schungs­pro­jekt SysPOT wird von ei­nem Team bestehend aus 14 Konsortialpartnern (Forschungs-, Entwicklungs- und Anwendungspartner) er­ar­bei­tet. PI Innovation GmbH übernimmt die Konsortialführung, wäh­rend das Institut für Pro­duk­tions­sys­te­me seine Kenntnisse zum Einsatz von Deep Learning im Bereich der technischen Sauberkeitsanalyse einbringt und dabei von IconPro unterstützt wird.

 

Inline-SPOT-Sensor: PI Innovation, Fraunhofer IPM, Hexagon

Bedarfsorientierte Reinigung: Höckh, Gläser, LPW

KI-basierte Steuerung: IPS, IconPro

Assoziierte Partner: Audi AG, Hansgrohe, sprintBOX, Walter AG, ZF, MTU Aero Engines

Förderhinweis

Das Vorhaben (Förderkennzeichen: 100483490) wird im Rah­men des Förderbereichs „Computer-Aided Photonics“ vom Bun­des­mi­nis­te­ri­um für Bildung und For­schung (BMBF) ge­för­dert und vom Projektträger VDI Technologiezentrum betreut.  

Weiterführende Links

Anfahrt & Lageplan

Der Campus der Technischen Universität Dortmund liegt in der Nähe des Autobahnkreuzes Dortmund West, wo die Sauerlandlinie A45 den Ruhrschnellweg B1/A40 kreuzt. Die Abfahrt Dortmund-Eichlinghofen auf der A45 führt zum Campus Süd, die Abfahrt Dortmund-Dorstfeld auf der A40 zum Campus-Nord. An beiden Ausfahrten ist die Universität ausgeschildert.

Direkt auf dem Campus Nord befindet sich die S-Bahn-Station „Dortmund Universität“. Von dort fährt die S-Bahn-Linie S1 im 20- oder 30-Minuten-Takt zum Hauptbahnhof Dortmund und in der Gegenrichtung zum Hauptbahnhof Düsseldorf über Bochum, Essen und Duisburg. Außerdem ist die Universität mit den Buslinien 445, 447 und 462 zu erreichen. Eine Fahrplanauskunft findet sich auf der Homepage des Verkehrsverbundes Rhein-Ruhr, außerdem bieten die DSW21 einen interaktiven Liniennetzplan an.
 

Zu den Wahrzeichen der TU Dortmund gehört die H-Bahn. Linie 1 verkehrt im 10-Minuten-Takt zwischen Dortmund Eichlinghofen und dem Technologiezentrum über Campus Süd und Dortmund Universität S, Linie 2 pendelt im 5-Minuten-Takt zwischen Campus Nord und Campus Süd. Diese Strecke legt sie in zwei Minuten zurück.

Vom Flughafen Dortmund aus gelangt man mit dem AirportExpress innerhalb von gut 20 Minuten zum Dortmunder Hauptbahnhof und von dort mit der S-Bahn zur Universität. Ein größeres Angebot an internationalen Flugverbindungen bietet der etwa 60 Kilometer entfernte Flughafen Düsseldorf, der direkt mit der S-Bahn vom Bahnhof der Universität zu erreichen ist.

Die Einrichtungen der Technischen Universität Dortmund verteilen sich auf den größeren Campus Nord und den kleineren Campus Süd. Zudem befinden sich einige Bereiche der Hochschule im angrenzenden Technologiepark. Genauere Informationen können Sie den Lageplänen entnehmen.

Interaktive Karte

Die Einrichtungen der Technischen Universität Dortmund verteilen sich auf den größeren Campus Nord und den kleineren Campus Süd. Zudem befinden sich einige Bereiche der Hochschule im angrenzenden Technologiepark.

Campus Lageplan Zum Lageplan